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CALCULATION OF MOLECULAR CONSTANTS
POTENTIAL ENERGY CURVES AND

FRANCK-CONDON FACTORS FOR LEAD OXIDE I
Ernest A. Dorko

Department of Engineering Physics
Air Force Institute of Technology
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Introduction

This paper deals with the preparation of potential energy

curves for diatomic molecules. The starting point for the

calculations is the spectroscopic data available which can

include observations of transitions between rotational,

vibrational, and electronic states. Once this data is gathered,

how is it processed so that the entire potential energy curve

can be calculated.
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Modeling Spectroscopic Data for Diatomic Molecules

Spectroscopic data resulting from the emission of energy by a

diatomic molecule during a transition from an excited electronic

state to a lower state may be represented as follows:

v(v',JIv",J") T'(vtJ') - T"(v",J.I)(

where v is the observed line frequency in wave numbers, the term

values for the upper and lower electronic states, T' and T"

respectively, are represented by the Dunham type expression I ) ":

T(v,J) = Ej Aij(v 1 /2)i JJ (J +) J  (2)

Although Eq (2) has the same form as that associated with the

Dunham coefficients, ij' i.e.,

T(v,J) E E~ Yi(v + 1/2 )i Jj (J + 1 )
J  (3)

researchers M. M. Hessel and C. R. Vidal make the distinction

that their A values are not necessarily identical to Dunham's

Y Iis.
Dunham(2) arrived at the expression in Eq (2) by using the

Wentzel-Kramer-Brillouin method (WKB) to solve the Schroedinger

Equation for the rotating diatomic vibrator for the energy levels

within one electronic state:

2 2 r 2  2 ""

d2t 87rt er h2J(J+ l ) 1
+F-V - 8nr +) 2  =0 (4)

dE h L87r r 1+

2
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where:

= (r - re)/re

r = the equilibrium internuclear separation

= the reduced mass

V = the potential of the function, with a minimum at re

V r = the last term which is due to the centrifugal force of

rotation.

He expressed the potential energy by expanding V about 0 = .

V = hca 2 (1 + a C + a +a 3  + ... ) (5)

where a 0  / ; w is the classical frequency of small0 e e' e2

oscillations expressed in cm-1 and Be h/(8r pr c). Finally,

he obtained expressions for the Yi,'s in terms of the ak's in Eq

(5).

Hessel and Vidal distinguish their constants, Auj, from the

Dunham constants, Yij' by pointing out that the latter are

theoretically derived, while the A ' 4ate the results of a-.

least-squares fit. Inherent in the least-squares fitting

procedure is the fact that the Au coefficients absorb the

effects of inaccuracies in the data, and are somewhat dependent

upon the values of their neighboring constants and upon any

missing constants (3 ) . For these reasons, the Aij's are only

estimates of the theoretical Y derived by Dunham.

Some further discussion of the Au and Yij constants is

appropriate. First, a listing of the correspondence of Dunham's

* - -. '..-....-. . -. -. . .. ...- . . . .-.. , . , . , --.-,-..... , ,- - - .. - - -. .. ,-. ,, ,-. -, ,".,"
, .. .~~~~~~~~~~~~~~..... ............ -m~~hli ~llmmlllllll~ I ............ , ..- .. ,. ,,



constants and the classical spectroscopic constants is desirable.

They are given in Table 1.

TABLE 1

Correspondence Between Dunham Coefficients and
Classical Spectroscopic Constants

y0 Y01 Be Y02 De Y0 3 ~ F Y0 H

Y1 we ll - "e Y12 -
8e

Y20 ~-e e Y2 1 Te

Y 30 wey

- We e

(a) Y 0is defined as:

Y00 = 1/4 Y20 + 1/4 Y0 1 ((Y11Y10 /(6 Y2 0 1 ) - 1)2  (6)

This is the expression normally reported in the literature based

upon the work of Dunham (2 ) , although the expression for Y 0 is

not explicitly stated in Dunham's work. Sandeman(7) and

Jarmain (8 ) expanded on Dunham's work. Using this material, the

expression given in Eq (6) can be verified. In addition to this

derivation, the expression for Y 0 was found in the following

works: (910,11,12). The expression for Y 0 was found to be

somewhat different in two publications. First, Herzberg's Y is

. .%
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larger than in Eq (6) by +3/4 Y20 Second, in McKeever's

work due to a typographical error, "+1/4 Y201' was omitted.

The works of Sandeman and Jarmain compliment Dunham's work,

making easier the understanding of Dunham's work.

Returning to Eq (1), it should be noted that when a least-

squares fit is performed using Eq (2), the bottom of the

potential energy curve of the lower state is typically assigned a

value of "0". This is done by omitting the A0 0 term from the

fit. When A 0 is found from the least-squares fit, it is not
002'-

equivalent to Dunham's Y for the upper state. For this reason,

Vidal assigns an asterisk to A0 0 and calls it A00 . This term is

son(14)made up of three components as shown

A00 = A0 0 + Te -A 0 0  (7)

AO0 and A00 are estimated from Eq (6). This A 0 and A 0 are then

the best estimates of Dunham'sY00 and Y0 0 .Eq (7) can be solved

for Te', the electronic term energy of the upper state:

Te = A00 - A00 + A0 0  (8)

In applying Dunham's expression, one should be aware of its

limitations. Expressions such as the Morse potential(18 ) "

2
U(r-r e) = De (1 - exp(-B(r-re))2 (9)

5



are constructed to guarantee that as r +re U -~ 0 and as r+

ell-

U approaches the dissociation energy, De Eq (5) on the other

hand does not necessarily satisfy these two criteria. Sandeman

showed that if Morsels equation is expanded about (r-r )=0, ite
takes on a form similar to Dunham's Eq (5), but is expressed in

terms of two constants and additional numerical coefficients as

follows:

U a a0(1 -a+.583a -0.250a &+0.086a4 ~.. (10)

A comparison of Eqs (5) and (10) shows that Dunham's expression

is a more general form of Morse's equation. Sandeman also

applied a similar expansion to an equation for potential energy

developed by rand obtained a similar correspondence

with Dunham's expression. Because of the increased number of

variables and, in turn, the increased flexibility, Dunham's

expression has the potential for being more accurate. But, N

because of this freedom, obtaining constants which satisfy the

convergence criterion is more difficult and is not guaranteed for

large values of r or v.

Jarmain (8) made a term-by-term comparison of similar

expressions developed from Dunham's work and by the RKR method

and showed that, upon neglecting Dunham's small corrections, the

potentials produced by the two are mathematically identical.

Based upon this, the use of Dunham's expression (Eq (3)) to

represent spectroscopic data for input to an RKR program for

generating potential curves is justified and appropriate.

6
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In applying Dunham's expression, one should remember that his

equations are developed for small oscillations about re. At

energy levels approaching the dissociation limit, Eq (2) may no

longer be appropriate. Eqs (1) and (2) are for simple cases. In
p-" -

cases where A-type doubling occurs, or where isotopic effects are

being considered, more complex models must be substituted for Eqs

(1) and (2). Works cited in the bibliography by Vidal and his

coworkers present variations of Eq (2).

Spectroscopic Constants by Merging Least-Squares Fit Data

(a) Development of the Method

The large quantity of data obtained in a spectroscopic r
analysis requires that the data be reduced to a more manageable

form. For example, Eqs (1) and (2) in the previous section are

used to calculate reportable constants. To make these models

usable, the Aij coefficients must be determined. The most widely

used method of generating these coefficients is to perform a

linear least-squares fit to the experimental data. For

spectroscopic data, a model is created, typically involving a

power series expansion based upon the rotational and vibrational

quantum numbers as expressed in Eqs (1) and (2). If only band

head data is being analyzed, the model takes the following form:

v '"Cv' I12))i -"(-1

iroAio (vi + /2)1 - E OAio Cv1 + 1/2)

If several different transitions are involved, different

values of the A" ground state constants may be obtained. In

7--.2
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addition, the accuracy of the A"'s may be different. It is

desirable to merge these constants and obtain a best estimate of

the ground state constants. This can be done by accomplishing a

weighted least-squares fit of the data. Such a merging can

produce more accurate estimates of the constants and reduce the

error limits associated with them. The merged fit may also

improve the upper state constants.

Merging may also be desirable for the case when two groups of

data are available with significantly different standard errors.

For example, if infrared data for vibration-rotation band

transitions and microwave data for transitions between adjacent

rotational levels are available, the greater accuracy of the

microwave data can improve the accuracy of the other constants if

a weighted merged fit is performed.

There are other methods of data fitting available. These

methods include least-squares deviation, maximum likelihood, and

minimum chi-squared. All have different fit criteria (16 ) . Also,

nonlinear least-squares fits are possible (17 '18 ). The present

report deals only with the least-squares fit techniques.

The least-squares method or "regression" method minimizes the

sum of the squared deviations between observed values and values

calculated using the constants obtained from the fit. The least-

squares method provides the minimum variance linear unbiased

(MVLU) estimates of the constants; that is, the least-squares

method introduces no bias. The fits produced are linear

functions of the data. When the fit is used to reproduce data,

. . "o .



the generated data exhibits the smallest possible variance from

the original data that can be achieved with the model and data L_

used (16 )-

In performing a least-squares fit, the following assumptions

are made:

1. The model (equation) chosen to represent the data is a

perfect description of the physical event.

2. The model is linear in the constants to be estimated.

3. The mean error of the experimental data is zero. Any

systematic error present must be small compared to the variances

and random errors of the data.

4. The variance-covariance elements must be finite and their

relative values known if different groups of data are to be

merged.

In reducing spectroscopic data, three methods are available:

1. The reduction of each band, i.e., each a group of

transitions from one electronic state to another, separately.

2. The reduction of a number of bands simultaneously.

3. The reduction of the bands separately and then merging

the resulting data.

The first and third techniques are developed in this paper.

The method of approach is now described. Least-squares fitting

techniques are based upon the following matrix equation:

v XB + E (12)

..... o
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where v is a column matrix containing the experimentally observed

line frequencies expressed in wavenumbers, X is a matrix made up

of the (v + 1/2) and the J(J + 1) terms as dictated by the model

in Eqs (1), (2), or (11) as chosen. 8 is column matrix made up

of the A constants which are to be calculated. The c column

matrix contains the unknown errors associated with each observed

experimental data point.

Eq (12) is then solved for g as:

(XT X)- xTv (13)

The estimated variance of the fit is expressed as follows:

a2  (v - x 0)Tv - X f (14)

where fm is the degree of freedom of the calculation. The degree

of freedom, fm' is equal to the number of experimental values v

used in the fit minus the number of constants to be obtained in

the 5 matrix. The variance-covariance matrix for the constants

obtained in Eq (13) is calculated by the following relation:

e a a2 (XT X -1  (15)

The diagonal elements of the e matrix are the variances of the

.nstants and the off diagonal elements are their covariances.

1,. correlation between the calculated constants is expressed by

the correlation coefficients which are obtained using the

variances and covariances in the following manner:

Cij :ij/ i 2 (16)
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X-state with significantly smaller errors than those obtained in

separate fits of their data.

The discussion of the b state data was reserved until last,

because they were obtained by making reassignments of many

transitions that were published in previous works.

The b-state constants listed in Table 2, Column I are based

upon the six assignments marked by asterisks in Table 6. The

assignments were made by Glessner (25) and Snyder (2 6 ) based upon

(30)the works of Kurylo, et. al. 0
. The variance of the constants

in Table 3 is remarkably small considering that only six data

points with five constants were used yielding a degree of freedom

(30)of one. A review of Kurylo's tentative assignments and

tentative assignments made by Oldenborg, Dickson, and Zare (2 9 )

show a much greater difference between the observed and

calculated values than would be expected from the constants of

Table 2.

Using the b state constants of Table 2, new assignments were

made for the experimental data which had been marked as belonging

to the b-X transition by Kurylo and Oldenborg. It was possible

to make new assignments for 29 of 34 observed values which had

been reported as belonging to the b state. Twenty-six of those

were used in a least-squares fit to generate new b state

constants. DUNCON was used to perform separate least-squares

fits to the data of Snyder and Glessner, and to the data of

Kurylo and Oldenborg. Then DUNCON was used to merge the results

of these fits.

24
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increased error limit reflects a bias in one or both of the data

sets.

Column III of Table 3 reflects the most conservative error

estimate of the three columns in Table 3. It is also based upon

the largest quantity of data. I

Presented in Table 5 art the constants obtained by merging

the experimental data of Glessner and Snyder. Presented for

comparison are results published by other researchers. I

The D-state constants were obtained in a separate merged fit

from that used to obtain the other constants because of their

large error. The values reported by Bloomenthal "2 8 ) produced a

better fit for his data; hence, his constants are the preferred

constants.

The A-state constants reported in Table 5 provide a

reasonable agreement with those reported by Linton and

Broida 27)* The reported constants are based upon thre merging of

data reported by Glessner and Snyder. L

The small a-state constants reported in Table 5 rival those

reported by Linton and Broida in accuracy. Table 3 shows that

the merged data of Glessner and Snyder produces constants with
• .. -.

error limits of magnitude comparable to that reported by Linton

and Broida.

The ground state (X) constants reported in Table 5 agree well

with those reported by Linton and Broida. The merging of

Glessner's and Snyder's data resulted in constants for the

23
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TABLE 5

Spectroscopic Constants for Pb03

Merged
onstants State Te (cm-1  We (cm-1  WeXe(cm-1

his Study D 30115.8(46.1) 542.2(54.9) -1.99(13.1)

Glessner & B 22282.80(3.67) 489.50(2.63) 0.149(0.363) -

nyder, Refs AO+ 19856.22(3.31) 447.88(3.50) 1.013(0.6007)

25) &(26)) b2  16335.44(2.89) 428.43(1.21) -0.99552(0.0983)

a 16021.51(1.69) 484.239(0.808) 2.949(0.109)

X 721.905(0.620) 3.5900(0.0683)

inton and AO+ 19862.6(1.5) 444.3(0.8) 0.54(0.12)

roida, Ref al 16024.9(1.45) 481.5(0.7) 2.45(0.07)

27) XO+ 720.97(0.36) 3.536(0.025)

loomenthal, D 30197.0 530.6 1.05

ef (28) B 22289.8 496.3 2.33

X 722.3 3.73

ldenborg, b, 16379+4301

ickensen&

are, Ref (29),_ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _

'This value is based upon estimate by Oldenborg, Dickensen and Zare

hat the b state is 350+430 cm-1 above the a state. --

2Based upon six data points marked with asterick in Table 7.
3Errors reported in parenthesis are one standard deviation.

22



are the unmerged and merged estimates for the D-X transitions.

The D-X data is merged with other data in a separate fit to

prevent its large variance from degrading the constants for the

other transitions. Finally, the merged results of Glessner and

Snyder's data, are compared in Table 5 with the best previous

published values available(27,28,29) .

Examination of Table 2 reveals values of we for the X-state

ranging from 715.7 to 731.5 cm- . DUNCON permits the merging of

the data listed in Table 2 in a weighted-correlated least-squares

fashion.

The results of the merging are presented in Table 3. Error

limits for we of the X-state are reduced from a maximum standard

error of +11.3 cm- to +0.620 cm- when the data in Columns I and

II of Table 2 are merged. The results are presented in Column I,

Table 3.

Column II, Table 3 contains the smallest error estimate for

the constants of the a-, A-, and X-electronic states. The

variances for the merged fits of Columns I and II are similar,

1.0248 and 1.008, respectively. But when the data in Columns I

and II are merged to yield Column III, Table 3, the estimated

variance of the fit and, in many cases, the standard errors of

the individual constants increase. Examination of (Columns I and

II) the a- and X-states reveals term electronic energies, Te with

error limits of comparable magnitude which do not overlap.

Because of this, when merged, the error limits reflect the equal

weighting of the almost significant differences and, hence, the

21



TABLE 4

Spectroscopic Constants for D-X Transition of PbO (cur1)

Electronic Constant Unmerged Merged
State

[322.3) £4.19]

D Te 29897.8(67.4) 30115.8(46.1)

We' 490.0(30.8) 542.2(54.9)

WelXe -16.53(7.72) -1.99(13.1)

X Well 606.1(33-3) 720.989(0.401)

We"Xe"l -8.32(3.53) 3.5312(0.0296)

Errors Reported in Parenthesis are One Standard Error

20



VC -K; K, K

TABLE 3

Merged PbO Constants (cm-i)1

GlessnerSource of Experimental DataII

tron- Constant Merging of Merging of Merging of
Eroec Gesne & Snyder Linton & Broida Glessner, Snyder,
State Data Data Linton, & Broida

_________ __________ ______________________Data

a Te 16021.51(1.69) 16024.06(l.16) 16023.16(1.80)

We' 484.239(0.808) 481.800(0.439) 481.488(0.769)

We'Xe' 2. 949 (0. 109) 2. 4595 (0. 04 34) 2.4339(0.0818)

b Te 16335.44(2.89) 16331.83(4.77) P
We' 428.43(l.21) 428.34(2.27)

We'Xe' -0.99552(0.0983) -1.014 (0.186)

A To 19856.22(3.31) 19864.11(2.14) 19860.04(3.13)

We' 447.88(3.50) 443.39(1.12) 445.32(1.83)

We'Xe' 1.013(0.6007) 0.446(0.145) 0.655(0.249)

B To 22282.80(3.67) 22280.52(7.08)

We' 489. 50 (2. 63) 489. 79 (5. 25)

We'Xe"l 0.149(0.363) 0.225(0.720)

X We" 721.905(0.620) 720.736(0.244) 720.890(0.395)

We"Xe" 3.5900(0.0683) 3.5201(0.0171) 3.5316(0.0292)

Var ia nce
of Fit 1.0248 1.008 4.076

1Column I is the result of merging with DUNCON the separate fits in

Columns I and II of Table 2.
2Column II is the result of merging the separate fits in Column III

of Table 2.
3 Column III is the result of merging all separate fits in Table 2 -

with DUNCON.

Errors reported in parenthesis are one standard error.

19



TABLE 2 -(Continued)

Source of Experimental Data

Electronic Constant I Ii III

Transition _____ Glessner Synder Linton & Broida

WelXe' 2.04(2.74) 0.479(0.8632) 0.443(0.146)

We" 715.7(1.3) 724.69(2.93) 720.933(0.374)

We"lXe" 2.80(1.58) 4.012C0.390)I 3.5334(0.0239)

152.023 £64.633

B-X Te 22290.9(10.3) 22286.22(9.06)

We' 495.70(4.34) 483.00(8.13)

WelXe' 2.22(1.39) -1.07(1.71)

Well 731.52(6.99) 721.11(3.85)

We"lXe" 5.06(1.11) 3.532(0.477)

1The quantities in brackets are the variances of the least-squares

fits (Eq (14)). Errors reported in parenthesis are one standard

deviation. Column I contains least-squares fit to data produced by

Glessner (Ref 19). Column II constants are based upon data produced by

Snyder (Ref 42). Column II constants are the results of performing least-

squares to data published by Linton and Broida (Ref 33).

2The constants for b-x were obtained by combining the data observed

by Glessner and Snyder.

18
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TABLE 2

Constants from Separate Least-Squares Fits

for Each Electronic Transition (cm-1 )

Source of Experimental1 Data

Electronic Constant I II III

Transition _____ Glessner Synder Linton & Broida

[10.0311 [9.875] [6.310]

a-x Te 16021.54(2.81) 16021.68(2.59) 16023.12(1.38)

We' 482.93(l.26) 484.51(1.09) 481.831(g.438)

We'Xe 2.814(0.170) 2.970(0.146) 2.4590(0.0432)

We" 719. 36 (2.19) 722.785(0.961) 720. 166 (0. 469)

We1"Xe' 3.067(0.455) 3.712(0.105) 3.4600(0.0462)

[2.0351

b-x Te 16336.43(6.08)2

We" 428.98(1.46)

We'Xe -0.944(0.114)

We" 722.00(l.92)

WeXe 3.554(0.193)

[41.701 [33.07] [4.817]

A-X Te 19846.0(25.8) 19858.52(6.88) 19864.79(2.38)

We' 453.5(18.5) 446.30(4.92) 443.31(l.12)

17



5. The standard error of the constants and the degrees of

freedom involved in the calculations. This data will enable the

reader to establish his own confidence limits.

6. The estimated variance of the variance, 0., may be

helpful. An estimate of this value for large samples of normally

(24)distributed data may be obtained by the formula

ac  O/[2fm] 1 2  (23)

Other data which may be appropriate include the variance-

covariance matrix of the final merged constants and the results

of the testing to determine the normality of the data sample.

Application to the Spectroscopic Analysis of Lead Oxide (PbO)

The experimental data of the AFIT investigators,

Glessner (25) and Snyder (2 6 ) was reduced using DUNCON to yield

spectroscopic constants for the X, a, b, A, B, and D electronic

states of PbO. In addition, the reported data of Linton and

Broida (2 7 ) was used to obtain constants for the X, a, and A

states. The data of Glessner and Snyder was reduced, error

estimates were obtained, and the data was merged using DUNCON.

Lead-oxide data produced by Linton and Broida was also reduced

using DUNCON and the A-X and a-X data were merged. Also, the

results of all three investigations were merged using DUNCON.

The results of reducing the data of each investigator for each

transition separately is presented in Table 2. This data is then

merged in several combinations. The constants resulting from

these mergings are presented in Table 3. Presented in Table 4 "
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the extension of the potential curve to its dissociation

Before merging data from separate least-squares fits, a check

should be made for systematic errors. A simple check is to

verify that for a given set of confidence limits, say 95%, the

error limits for the common constants obtained in two independent

fits overlap each other. If they do not, then it is probable

that one set contains a systematic error. A second more

sophisticated test involves the computation of the confidence

limits for the differences for pairs of corresponding constants

checking to see if they include zero (1 6)* Calculation of the

confidence limits of differences involves student's t-factor and

methods are given by Bennet and Franklin~2 ~ and Dixon and

(20)Massey .A more extensive discussion of the covariance-

variance data and how it may be used is presented by

Albritton(1,9

Finally, Albritton provides a recommendation as to what data

should be provided in a report on the results of a spectroscopic

study. He lists the following as essential data:

1. The observed line numbers (with assignments).

2. If room permits, the variance-covariance matrix used to

merge the data.

3. The model used to represent the experimental data.

4. The estimated molecular constants.
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With the confidence limits for the estimated constants

properly established, one can then determine if the constants are
f an (21);'

significant For example, if a constant has a value of 3 and

an assigned error limit of +5, the range in which the true value

of the constant might be found is -2 to +8. This range includes

0; hence, the constant is not significant. If the assigned

1/2confidence limits, $i~teii includes zero, then the constant is

insignificant and may normally be discarded. Two exceptions to

this rule may be encountered.

The first exception concerns the case where a non-zero

correlation between two molecular constants exists. If non-zero

correlation coefficients are involved, standard errors must be

calculated using the most general formulation involving both

variances and covariances. If large correlations exist, the

rounding of a constant to the number of significant digits

dictated by the standard error of the constant, may result in

loss of information, i.e., rounding may introduce unnecessary

(16)inaccuracies into the calculated data

Albritton suggests that one digit beyond the "one standard

error digit" should suffice for most fits. A simple check is to

use the rounded constants and see that they reproduce to some

desired accuracy the values calculated using the unrounded

constants obtained from the fit.

The second exception occurs, where it may prove necessary to

retain a constant when not justified by the standard error, in

14
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As in all analyses, the data should be checked to insure that

the errors predicted by the least-squares fit follow a normal

distribution pattern. Albritton provides a fairly complete

discussion of the checks commonly used( 1 6 ).

Having established that the errors of the data are normally

distributed, one should then construct confidence limits for the

constants based upon the degrees of freedom and the confidence

one wishes to have that the true value is within the assigned

" limits. The placing of too much reliance upon error limits

1/2
specified by one standard deviation, lxeii , should be avoided.

Even if a large sample of data is taken, one can only be about

1/2
68% certain that the "true value" lies within a range of +ixii•

If a 95% confidence level is desired and the degrees of freedom,

1/2
* fm' is greater than 30, one must assign limits of +2xeii . The

" multiplier of Ei12 is student's t-factor. It is named after its

Soriginator, W. S. Gosset (1876-1937). It is a function of the

degrees of freedom of the calculation and the desired confidence

level, "1-a". Dixon and Massey (20) give a tabulation of

student's t-factor as a function of the degrees of freedom and

the degree of confidence. The confidence limits for the constant

are then expressed as follows:

1/2
a i + t(fm, l-a)6 ii (22)

Having established the limits, one can assume that the

1/2probability of the true value of falling within the limit +tei-

is "1-a" where a may vary between 0 and 1.

13



.7 .

will hold the desired merged constants. The y matrix will often

contain several values for the same constant. Each constant will

Mbe represented only one time in the M matrix.

To perform a weighted, correlated least-squares fit, a matrix

composed of the variance-covariance matrices from a separate

least-squares fit is required.

This matrix is given the symbol "61". It is structured as

follows:

o o
01 = 2 j (18)

0 0 e

where 81, 6, and 83 are the variance-covariance matrices of Eq

(15). The formula required to obtain the merged constants is as

follows:

aM = (x TeIx)- x Tei-ly(19)

The estimated variance of the new merged fit is given by:

a2 (y U M ep

a2 = (y - xBM)TeI' (y - xM)/fm (20)

where fm is the degree of freedom. The variance-covariance

matrix of the merged constants is obtained by the following

calculation:

em= a2(XTeI-X)1 (21)

°..
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The subscripts refer to the two constants for which the

coefficient expresses the correlation.

As mentioned earlier, the performance of separate fits to

each band will yield several values for the constants associated

with the lower electronic state. The variances for different

bands may also differ significantly. If the variances of the

bands are the same, the data can be combined in one large data

group and reduced simultaneously. If estimates of the errors are

available, a weighted fit based upon the error may and should be

performed.

Albritton describes an approach, the correlated least-squares

fit, which is more general than the weighted least-squares

fit (16 ,19). Albritton showed that one need not use all raw data

at one time to obtain a merged fit. He showed that a weighted

simultaneous multiband fit and a merged band-by-band fit are

equivalent. The merged fit is presented in this paper.

The bands or other groups of data are first reduced in a

least-squares manner as previously discussed.

Then the data obtained in the initial least-squares fit may

be expressed in the following manner:

y = XPM + A (17)

where y is a column matrix made up of the constants obtained from

the separate least-squares fits andp M is a column matrix which

11



TABLE 6

Assignments of the Vibrational Bands for the b-X Transition of
PbO Based on Molecular Constants Obtained by the MVLU Technique

Obs-Calc
Observed (cm- 1) Calculated (cm-1 ) (cm) Assignment Reference

21643 21659.8 -16.8 14,1 7
21200 21207.6 -7.7 13,1 7
19869.8 19860.2 9.6 10,1* Present Work
18515 18526.3 -11.3 7,1 2
17488.4 17483.1 5.3 3,0 Present Work

17212 17206.1 5.9 4,1 2
17108 17120.5 -12.5 7,3 2
17033 17047.5 -14.5 2,0 2
16915 16938.0 -23.0 5,2 2
16773 16769.0 4.0 3,1 2

16614 16613.5 -9.5 1,0 2
16488 16499.5 -11.5 4,2 2
16434 16428.7 5.3 7,4 2
16297 16292.4 4.6 17,11 2
16215 16214.1 0.9 14,9 2

16066.8 16062.4 4.4 3,2* Present Work
15773 15762.0 11.0 13,9 2
15623 15627.0 -4.0 2,2 2
15363 15363.2 -0.2 3,3 2
15281.9 15285.4 -3.5 9,7* Present Work

14687.8 14671.4 15.6 3,4 Present Work
14180.1 14178.5 1.6 8,8 Present Work
13367.3 13369.4 -2.1 0,4 Present Work
13117.5 13117.4 0.1 1,5* Present Work
12440.1 12440.4 -0.3 1,6* Present Work
11968.9 11978.2 -9.3 3,8* Present Work
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The 26 assignments used to obtain the constants are listed in

Table 6. The resulting b state and X state constants are

presented in Table 7. For the 26 values used in the new fit, a

standard error of +10.5 cm was obtained. For the 15 values which

the previous investigators reported "observed-calculated" values,

their standard error was +47.4 cm.

As shown by this example, by use of such a merging technique,

a correlation with previous work can sometimes be performed

leading to more reliable band assignments.

Rydberg-Klein-Rees Potential Energy Curves

The Rydberg-Klein-Rees (RKR) model for the potential energy

curve is developed in this section. Rydberg started with the

expression for the total energy, E, for a rotating-vibrating

diatomic molecule:

E p2 /2P + V(r) (24)

The p2 /2u term in Eq (24) is the kinetic energy of the system, p

in turn, is the linear momentum. The second term, V(r) is

defined as follows:

V(r) U(r) + K1/r2  U(r) + p2/2pr 2  (25)

where U(r) is the potential energy of the system, P is the

angular momentum of the system, and p is the reduced mass.
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TABLE 7

Spectroscopic Constants for b-X
Transition for Lead Oxide

State Te We WeXe

b16325-1(11.2) 430.99(2.47) -0.757(0.165)

X721.41(14.35) 3.700(0.441) .

27



Based on this energy expression, Rydberg developed a

procedure for graphically determining the classical turning

points for a diatomic molecule (31) Klein modified Rydberg's

derivation so that the turning points could be calculated
(32

numerically 32) . Reese obtained quadratic and cubic analytic

solutions approximating Klein's formulas (33 --

Klein's mathematical development is given here, Terms used

in the development are shown in Fig 1 as an aid in following the

presentation. The classical turning points are designed r' and

r". Klein defined the turning points in terms of quantities rI

and r2. For his analysis, r1 and r2 are measured from re, r1

being positive and r2 negative. Then r' and r" are defined as

follows:

r' r I + re (26)

r e + r2  (27)

Then

dr' dr I  (28)

dr" dr2  (29)

dr dr I or dr2  (30)

................. . ,. .
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E p2/2i V(r)

V(r) =U(r) + =2 U(r) + p2/2ir2

D
e

V(r)

I VIr)

rr -

e r

r2 rl

Figure 1. Potential Energy Versus Internulcear Distance
for a Diatomic Molecule
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Klein designated the width of the potential curve as 2f and from

Eqs (26) and (27), it follows that:

2f (r r1 +re) ( r2 +re) r1-r2  (31)

2• %

The energy in Eq (241) may be expressed as a function of "I",

the action integral for a rotating vibrator and "fI". These terms

are defined as follows:

I §Pdr (32)

2,

f P /(20I ) (33)

The following relationships which involve the period, T, and

the average position of a harmonic oscillator, lr, are known:

,.

lIT §E/aI (34)

r2 E/a(2 ) (35)

P TPaE/3K) (35')

Using Eqs (32) and (34) and solving for the differential of E and

adding the results, the following is obtained:

6E= (/T)I (P/T)6K (36)

30
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Inverting Eq (32), the following is obtained:

= aElaI (37)

Setting Eq (36) equal to zero and solving for P, the following is

obtained:

5: -pI/3 (38)

From the equation for the momentum, p p iv = w(dr/dt), one can,

by integrating over one cycle, obtain an expression for the

period of vibration for a harmonic oscillator:

= §'(dr/p) (39)

Solving Eq (24), the equation for energy, for p and substituting

into Eq (39), the period of oscillation may be expressed as:

.= (/2) § (E-V(r))1 /2dr (40)

The integral in Eq (40) can be broken into two parts, one to

be integrated from re to rl, and the other from r2 to re (as

depicted in Fig 1). This operation yields:

= 2(u) 1/ 2  1 dr/(E-V(r))1/2 -
r e dr/(E-V(r)) 1/ 2] (41)

r r
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i- " "' ~~~~~~~~~~~~~~.. . . . . . . . . . . . . . . . ..l '.... ".... °-"""" 
'  

"
'" 

- " "" " -"" "-
. . . . . . . . . . . . . . . . . . . . . . .



R- t. ' - .. ; - r

The factor of two is introduced to account for one vibration

cycle from r e through rI and r2 and back to re again.

Rearranging Eq (41) and recombining the integrals, one obtains: -.

T = (211)I 2  dr 1 dr 2)/E-Vr)) /2 (42)

Now to change the variables of integration, Klein defined the

following terms:

y = V(r) -V(r e ) (43)
e

and

x E E - V(re )  (44)

where x is constant for a given E. Then r may be expressed as a

function of y as follows:

r r 1 (y), r > re (45)

r = r 2 (y), r < re (46)
2 e

and when at re, r1 (O) = r2 (O) = re. Subtracting Eq (43) from

Eq (44):

x y E V(r) (47)
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and if the 'If" of Eq (31) is function of y, then as defined

r 1(y) r r2(y) M fy) (48)

then

dr /dy -dr /dy 2df~y)dy (49)

or

dr1  r 2f'(y)dy (0

Using Eqs (45), (46), (47), and (50) to change the variable

of integration and integration limits in Eq (42), Klein obtained:L

~:2 (20)1 /2 f1 2 ly dy/(x-y) 112  (51)
y2

From Eq (43) when r z re then V(r) =Vr and y 0. Thus, the

integral in Eq (51) may be evaluated from 0 (defined as the

bottom of the potential well) to some value X.

=2 (20i'' f fl(y) dy/(x-y)'' (52)
0

This is the first of two integral equations central to Klein's

derivation.
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Combining Eqs (28), (35), (35'), and (40) yields:

p=T (1/r) (V/2)1" § (1/r) Edr/CE-V(r))1 ) (53)

By definition:

dr/r2  -(1/r) (54)

Then Eq (53) becomes:

p=-(P~/2) §d(l/r)/(x-y)1" (55)

Again, the integal in Eq (55) may be broken into two parts. Then

for r > r e

r" r2 +r e (56)

1/r" M/r2  r (57

and if re is set equal toO0 then:

1/r" 1/r (58)

Similarily for r < 0:

I/r' 1/r1  (59)

34



* .- Z -7.

Then for small oscillations about r e, Eq (53) may be written as

the difference between the integrals:

12 1 1
p =2 (p/2)1 / -d(l/rl)/(x-y)1/2 - e-d(l/r)/(x-y)1 /2 j

1 1
r er 2  (60)

p =(2i.) r1 d(l/r2  l/ 1 /xy 1 /2  (61)
1

r2..

Klein established the following definition:

2g(y) 1/hr2  1/hr1  (62)

Differentiating with respect to y yields:

2dg (y) =(d/dy) (1/r 2 ) -(/y hr)(3

Changing the notation yields:

2g'dy =d(l/r 2 ) -d(l/rl) (64)

Substituting Eq (64) into Eq (61) yields:

p 2(1.~/2f [g' (y)dy/(x-y)1 ] (65)
0
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with the limits of integration assigned in the same manner as for

Eq (52). This is the second integral which is central to Klein's

derivation.

In the next step of his development, Klein derives expression

for rmax and rmin , the classical turning points for a harmonic

oscillator. Klein recognized that the integrals for T and P (Eqs

(52) and (65)) were of the Abelian type. He multiplied both

sides by dx/(c-x) 1/2 and integrated both sides from x = 0 to x =

where a = (E - V(r))( 1 1 ), i.e.,

OL y=a x=a.
f Tdx/(c-x) 1 / 2 = 2(2p)1/2 f f'dy dx/[(a-x)(x-y)]
0 y=O x=y (66)

In eq (66)

f'(y) = f(a) (67)

and

fc dx/[(a-x)(x-y)] fa dx/(-x2 +y+a-ay)l/2  (68)

y y

Eq (68) may be integrated as follows (Ref 6:300):

dx/(uv)1 /2 = 2/(bd) 1/2 tan-l[(-bduv)1 /2/bv], for bd > 0 (69)

36



Su =a+bx, and v =a'+dx and for the present integral:

ia C a$ -Y

b-i d 1

bd =-1

Then the integral can be evaluated to be ir.

Finally, the left side of Eq (68) is evaluated as:

OL dx/(a-x)1 /2  2(2p)1/2 f (a) (71)

olving Eq (71) for f(a):

f (a) l/ (2 r(2 p)")f dx/(a-x)1 1  (72)
0

for a =y:

y
f (Y) 1/ l(2 T(2 4 1 / 2 )f dx/(y-x)1 /2  (73)

0

Similarily, Eq (65) for g may be transformed into the

,owing:

g(y) =1/(2 7r(2 p)l)f p dx/(y-x)1/ (74)
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From the definitions for x given in Eq (44):

dx dE (74')

tituting Eq (74') into Eq (34) yields:

T dx =dI (75)

illing that E is a function of I and K, and using Eq (47),

(73) becomes:

f (V) l/ /(2Tr(2p.) 1 2 ) dI/ (V-E (I,K))1/2 (76)

From Eqs (34), (35'), and (74'):

=x p dE (3 (E/9K) dE T T(E/;K (3 I/T) (3 E/3K )31 (77)

Eq (74) becomes:

3(V) = /(21T(2p)/ 2  f a[E (I K/(3K) dI]/(V-E (IK))~ (78)
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TABLE 10

RKR and IPA Potential for the a-State of Lead-Oyide

RKR IPA

V c - 0 010
Gvc) R-(A) R+(A) Gv(cm 1) R-(A) R+(A) Bv(cm-1)X1O0

2.122

240.13 2.075 2.172 240.23 2.054 2.192 25.163

716.87 2.011 2.250 24.988

1188.55 1.982 2.293 24.822

1655.34 1.960 2.329 24.658

2117.24 1.942 2.363 24.495

2574.13 1.928 2.394 2574.24 1.925 2.392 24.328

3026.34 1.911 2.421 24.157

3473.56 1.899 2.448 23.979

3915.90 1.887 2.457 23.795

4353.34 1.877 2.501 23.607

4785.63 1.868 2.528 4785.85 1.868 2.527 23.419

5213.45 1.859 2.552 23.236

5636.23 1.850 2.576 23.060

6054.34 1.842 2.600 22.893

6467.82 1.834 2.624 22.729

6874.63 1.827 2.647 6876.59 1.827 2.648 22.562

Y -
00 1.5566X10 5 YO 0.16759
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TABLE 9

RKR and IPA Potential for Ground State of Lead-Oxide

RKR IPA

Gv(cm -1 ) R-(A) R+(A) Gv(cm - ) R-(A) R+() Bv(cm- 1)X100

/2 1.921

359.62 1.868 1.980 359.918 1.867 1.979 30.687

1073.52 1.832 2.027 1073.901 1.831 2.027 30.469

1780.34 1.809 2.062 1780.716 1.808 2.062 30.256

2480.10 1.790 2.092 2480.445 1.791 2.092 30.048

3172.78 1.775 2.118 3173.120 1.776 2.119 29.844

3858.39 1.762 2.143 3858.743 1.763 2.144 29.645

4536.93 1.751 2.167 4537.299 1.752 2.168 29.452

5208.40 1.740 2.189 5208.773 1.741 2.190 29.264

5872.79 1.731 2.211 5873.161 1.732 2.212 29.082

1 6530.11 1.722 2.231 6530.471 1.723 2.236 28.905

1 7180.36 1.714 2.251 7180.713 1.715 2.253 28.731

7823.54 1.706 2.271 7823.891 1.707 2.273 28.557

8259.65 1.699 2.291 8459.997 1.700 2.292 28.378

1 9088.68 1.693 2.311 9089.028 1.693 2.311 28.192

9710.64 1.686 2.330 9711.015 1.686 2.330 27.998

10325.53 1.680 2.349 10326.059 1.680 2.349 27.796

YO0 0.0233501 YO0 0.37952
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TABLE 8

Input Constants and Data Used to Generate
Potential Energy Curves

State

nstants x a A

Te* 0.0 16024.9(1.45) 19862.6(1.5)

720.97(0.36) 481.5(0.70) 443.3(g.8)

20 3.536(0.025) -2.45(0.07) -0.54(0.24)

0.307519** 0.252(0.10)* 0.2588**

- 1.9167X10-3 ** -1.6761X10-
3 # l.4X10-3 ** -

022.2X10- 7 ** 2.2X10-7 ## 3.3X10-7 **

Mass :Oxygen -1.5994 amu; Lead -207.19 amu.

'Source: Linton and Broida (Ref 33).

'Source: Suchard (Ref 45).

Source: Calculated from Linton and Broida's Y01 using Eq (104).

'Source: Used X-state value for a-state Y0 2 . The a-state Y02 should be

calculated according to Eq (104'). The error due to this

substitution should be small.
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Lead-Oxide RKR-IPA Curves

To demonstrate the use of the RKR-IPA program, the x-, a-,

and A-states were selected for evaluation. Curves were drawn for

the x-, a-, and A-states using the results of the RKR routine

alone or using the combined RKR and IPA routine (RKR-IPA curve).

The constants used to generate these curves for each state are

presented in Table 8. The RKR and IPA results are presented for

the X- and a-states in Tables 9 and 10, respectively. The RKR

data for the A-state is presented in Table 11. The resulting

potential energy curves are presented in Figure 2 for the X-, A-,

and the a-states. For the A-state, the curve presented in Figure

2 is an RKR curve, while for the X- and a-states, they are RKR-

IPA curves.

The ultimate use of a potential should be to predict what

transitions should occur. A sophisticated analysis would involve

the calculation of Franck-Condon factors from the wave functions

resulting from the solution of the Schroedinger wave equation.

But it is possible to arrive at certain conclusions without

calculation of the Franck-Condon factors. For example,

examination of the a-state and X-state curves show that no

overlap exists between the v'=0 energy level for the a-state, and

v"-0 for the X-state. This indicates that such a transition is

classically forbidden. For example, a transition observed at

15898 cm- I had been assigned to the a-X (0,0) transition.

Reevaluation showed that the 15898 band head should be the a-X
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part of the present program but are here briefly discussed. One

approach Vidal used for quasibound states involved starting the

integration of the SWE at small internuclear distances and

looking for the maximum of the internal amplitude inside the

centrifugal barrier using a Breit-Wigner parametrization(4 3 ).

Vidal also used a second approach in the same work (37 ). For the

quasibound states, he introduced an artificial barrier at large

internuclear distances permitting the use of the Numerov-Cooley

method. The eigenvalues he found in this manner were slightly

higher than the energy eigenvalues derived from the maximum of

the internal amplitude. Proper choice of the barrier kept the

differences within the standard errors of the measurement. Using

this technique, Vidal stated the same numerical method can be

used for both quasibound and bound states.

Continuing with the program, as presented in this paper, it

is necessary to transform the energy used in the SWE to units

which are consistent with the units of length being used, Bohr

radii. Thus far, energy has been expressed in terms of inverse

centimeters, wavenumbers. To convert wavenumbers to energy units

consistent with Bohr radii, it is necessary to divide by this

factor (41)

N 60.19972628 ,-6A2 wavenumbers (107)

4 rcaOPA IJA

where a - 0.52197706 and NA = Avogadro's number.
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the outer turning points of the rotationless potential. To avoid

this, Vidal chose a nonlinear interpolation given by:

(r-re)(rmax-rmin ) (105)X :.(105)

(rmax+rmin) (re+r) 2 rmaxrmin 2 rer

This relation assumes X=1, for r=re, and X=O, for r=rmax and X=1

for r=rmin• .--

The interpolation becomes linear for:

r. +r

rmax+rmin (106r e = (106) ,+
2

This formulation treats the inner and outer turning points with

comparable weight and reduces the number of Legendre polynomials

in Eq (105).

As noted, the first use of the perturbation technique to

adjust approximate potential energy curves is attributed to Hinze

and Kosman (3 6 ). The technique used in this program to solve the

Schroedinger equation is the Numerov-Cooley method(41, 4 2 ). The

Numerov-Cooley method of solving the SWE was used by J. K.

Cashion to test the validity of approximate eigenvalue equations

developed by Perkeris for a rotating Morse oscillator(4 1). 2:

The routine presented in this paper solves the SWE for bound

states. Vidal discusses techniques for handling quasibound

states. The techniques for evaluating quasibound states are not

47

•



to extend calculations beyond RMII and RMAA, as specified by Evj,

produced large oscillations. He finally settled upon a

combination of Legendre polynomials and an exponential function

to dampen the oscillations. This combination improved the

convergence of the IPA method. The expression Vidal used is as

follows (12)

Vo(r) E ciPi(x)exp(-x 2n) (103)
i

where the typical range for n is 1<n<5. The Gaussian part of Eq

(103) provides a smooth cutoff avoiding unphysical oscillations.

The Legendre polynomials are calculated using the standard

recursion relations ( 0

(n+1)Pn+l (x ) (2n+l)XPn(x)-nPn l (x) (104)

where P1  1 and P2= X.,

Kosman and Hinze (3 6 ) used a linear relationship between r and
X such that X=1 for r=4 max and X=-1 for r-rmin - Vidal found this

relationship to provide poor convergence when dealing with

vibrational levels all the way to the dissociation limit and when . -

dealing with anharmonic potentials. He stated that the reason

for the poor convergence in the case of a highly anharmonic

potential is that a linear interpolation tends to optimize only
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V0 (r), being sought may be expressed as a sum of the approximate

I.. -

potential and some delta potential.

VO(r) = 'J(r) + AVO(r) (99)

In turn, it follows that the true Hamiltonian differs from the

approximate zero order Hamiltonian (H0 + Hrot) by AV (r):

HO + 11rot =Hg + Hro + (r) (100)

First order perturbation theory gives the following relationship

between the perturbation to the Hamiltonian eAV0 (r) and the

energy change A~Ev

01 0AEj= <*v AVOW) ~J (101)

To obtain a correction to V(r), a mathematical expression of

the following form is assumed to represent AV (r):0

AVOWr = cifi(r) (102)

The selection of the specific form of the function fir) is

critical to the convergence and solution of the SWE.

Kosman and Hinze chose Legendre polynomials Pi(x) to

represent the fi(r) functions(36 ). Vidal found that attempting
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This formulation has been simplified by neglecting terms

describing electronic coupling contributions (3 9 ) .

The rotational motion of the molecule is described by:

_ cJ(J+1 )

Hrot  e (97)"
rot7a wj r

In the inverted perturbation approach, one starts with an

approximate potential V0 (r), for example an RKR potential. Eq

(95) is solved numerically for the zeroth order eigenvalues Evj

and the radial wavefunction *vj(r). ".

Then an energy correction AEvj is calculated according to the

following formula:

0
vj Evj - Evj (98)

where Evj is the measured term value as calculated from the

spectroscopic constants and quantum numbers v and J. If the

difference between the experimentally determined term values and

the eigenvalues obtained from the SWE is sufficiently small, the

calculation is stopped.

If the difference exceeds a specified limit, then one

proceeds. As stated, the goal is to obtain some correction to

V(r), i.e., AV(r), such that the calculated and experimental

Ej 's agree. Following this reasoning, then the true potential,
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with the SWE. This leads to the use of the inverted perturbation

approach. The goal of the inverted perturbation approach (IPA)

is to adjust the potential energy curve of rotationless

molecules, V0 (r), so that the quantum mechanical eigenvalues,

Evj, obtained from a solution of the Schroedinger wave equation

agree in a least-squares sense with the measured term values,

T(v,J).

The IPA technique was first demonstrated by Hinze and

Kosman(36). Vidal and Scheingraber(12) expanded the use of the

IPA method. Vidal( 37 ,38 ), in conjunction with several authors,

has applied the IPA method to a number of molecules.

The Schroedinger wave equation (SWE) for a vibrating rotator

(Eq (4)) is the basis of the IPA method. To develop the IPA

method, the SWE can be expressed as follows(12 ):

0 0 0
(H0o Hrot)lpvj(r) =Evjd~vj(r) (5

vJ iste energy eigenvalue specified by the vibration and

rotation quantum numbers. Ho is the Hamiltonian of the

nonrotating molecules and is made up of the terms.:

h d

H: (96)

L11 c] d~r+ Or

where V,(r) is the potential energy of the rotationless molecule.
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.04)m

Using these definitions, Eq (86) for g becomes: 34 )

V

g(v) f B(v')(G(v)-G(v'))-/ 2 dv' (93)
v 0

From the definitions in Eqs (22) and (62) for f and g the

following expression for inner and outer turning points may be

obtained: *

r (f2 + f/g) 1 2 + f (94)

Solutions of the equations for f and g are discussed in the

section on the RKR Program by C. R. Vidal (9 ). The Dunham

coefficients calculated from spectroscopic constants (i.e., from

Program DUNCON) are input to the program, program RIPA. By use

of this program the integrations are performed by means of a

Gaussian integration routine and an RKR potential energy curve is

produced by means of a least squares fit to the inner and outer

portions of the curve. These calculations are performed

separately for each electronic state of interest.

Inverted Perturbation Analysis

Having constructed a semiclassical RKR curve, the next step

is to determine if that curve is consistent with the Schroedinger

wave equation; or, even better, to adjust the curve so it agrees
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Eq (85) becomes:

f =f (G (v) G G(v')-1 /2 dv' (88)
V 0

where Kaiser(3 5 ) defined the lower limit of integration by the

following:4

G 0 ) = .YOO (89)

where Y0 is the Dunham constant previously defined in Eq (6).

The variable v0 in G(vg) may be expressed in terms of Dunham

coefficients as:

ve -1/2 -A =-1/2 (Y 0 0/YlO) (1 + YO0 Y20 /Y1 0 + .. ) (90)

For j = (34)

aE/aJJ~l) ni= Yni (v+1/ 2 ) n =B(v) (1

where B(v) is the spectroscopic term defined as follows:(13 )

By Be - c(v+l/2) + y(v+l/2).. (92)

41



Then

a/ a= 2ph2(qqj~jl))(84)

Finally, the expressions for f and g become:

f f(V, J(J+1)) h/ (2 ~~ 1  1/2 dvl2

0 [V-E(v+1/2,J(J1)" (85)

0 [V-E(v+1/2,J(J+1))] 1/2  (86)

where the upper limit of integration v' is selected such that

* V =E(vl+1/2,J(J+1)) for the fixed value of J(J+l) used in the

integrals (11).

If the RKR calculations are evaluated for J=0 then Eq (2)

* reduces to:

T Yi (v+1/2)1~ G(v) (87)

* more commonly referred to as Gv (34).
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As E(I,K) approaches V in Eqs (76) and (78), the integrals

become infinite. To avoid these singularities, Klein instead

evaluated the following expression:

S(V,K) = i/(w(21i)1 /2 )f(V-E(I,K))I/ 2dI (79)

This expression has the following relation to the f and g of

Eqs (76) and (78):

f = aS/3V ; g -S/ (80)

As shown in Eq (2), spectroscopic energy levels can be

represented as power series of (v+1/2) and J(J+l). It is

convenient then to express the integrals for f and g in terms of

the quantum numbers v and J.

The expression for the radial action variable in quantum

mechanical terms is

I = (v+i/2)h (81)

Then

d(I) = d(v+i/2)h (82)

The quantum mechanical expression for K is:

K = P2/2 J(J+l) h2/2 (83)
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TABLE 11

RKR Potential for the A-State of Lead-Oxide

V Gv(cm-1 ) R-A RJ

0.0 222.30 2.025 2.168

2.5 1328.32 1.937 2.288

5.0 2427.60 1.890 2.367

7.5 3520.12 1.856 2.432

10.0 4605.90 1.829 2.491

12.5 5684.92 1.807 2.546

15.0 I 6757.20 1.788 2.597

Y0 0.28500
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(3,2) transition. Both assignments were acceptable within the

error limits of fit. The relative positioning of the potentials

indicate that only the (3,2) transition is possible. The

calculated value for the a-X (3,2) transition is 15898.4 cm-1

The next step should be the generation of a new set of

constants using the formulas for Gv and By and the newly obtained

energy eigenvalues Gv and By values generated by the IPA routine.

This technique was applied to the ground state IPA potential of

Table 9. From this, the following constants were generated for

the ground state:

Y0 = 720.991(0.058) cm- '

Y20 = 3.5357(0.00479)

The calculation of new values for the rotational constants Y

YII, etc., from Bv was not performed.

The calculations using only Vidal's RKR-IPA method were

halted at this point. Attempts to extend the curves to the

dissociation limit in one jump produced a potential which

diverged as the curve approached the dissociation limit (see

Figure 3). Not having data for vibrational levels above about

v=15, the iterative techniques of gradually extending the curve,

as discussed by Vidal and Stawalley (Ref 43), were not attempted.

They used the IPA method to improve the RKR curve at lower
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levels, and then on successive trials, extended the curve slowly

to the dissociation limit.

The reader is referred to Vidal's works listed in the

Bibliography for further information concerning the generation of

new constants and the extension of potential curves to the .

dissociation limit using the IPA routine.

Methods for Extending RKR Curves

In many cases, because of the lack of experimental data, the

constants necessary to construct an RKR curve may not be

obtainable from straightforward least-square fits or their

quality may be insufficient to construct accurate curves. Two

techniques for improving existing constants which may, in turn,

be used to produced improved RKR curves are presented here( 2 2 ).

The potential energy curve of a diatomic molecule should have

a minimum at some intermediate distance, approach the

dissociation limit for large internuclear separations and

increase rapidly as the atoms approach each other. Ideally,

curves generated using the RKR method should satisfy these

criteria.

For many diatomic molecules, only two and, at most, three

vibrational constants are available. The available rotational

constants are even more limited. Attempts to generate curves

based upon these constants using the RKR method can be expected

to produce curves which do not meet the dissociation criteria or

which do not exhibit an increasing potential for small
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internuclear distances. These results occur because the

experimental data upon which the constants are based may

represent only a fraction of the vibrational levels which exist

between the bottom of the potential well and the dissociation

limit.

To develop potential energy curves which obey the known

constraints, Leroy and Burns have reported on a new technique

which shows promising results. While they start with constants

obtained from experimentally observed transitions, they then

adjust these constants slightly until the new RKR potential .

energy curve is most consistent with all of the known

constraints.

Leroy and Burns used their knowledge of the desired shape to

adjust the constants. They worked with the Gv and B v quantities

as expressed in Eqs (87) and (91). Expressed in terms of these

two quantities, their criteria for adjusting the molecular

constants are:

1. V( ) assymptotically approaches the dissociation energy
becomes

(De) and the difference between energy levels, Gv+i/ 2 , b e

for the same value of v. G is defined as:

Gv+I/2 G(v + 1) - G(v) (108)

2. The slope of the inner portion of the RKR curve must be

negative. Hence:

dV(r)/dr < 0 (109)

58

' '"'" " ""/ " ....... ""'- -......... . ....... . .. . -



3. The slope of the inner portion of the curve must become

increasingly steeper; that is, the second derivative with respect

to the internuclear separation must be positive:

d2V(r)/dr 2 > 0 (110)

L

A study of Eq (88) reveals that as Gv+l/2 becomes smaller,

the quantity f becomes larger. In turn, Eq (93) shows that f

determines the width of the RKR curve. Examination of Eq (93)

further reveals that the value g determines the center of the

potential curve for a given energy level. In turn, Eq (92) shows

that having determined the constants necessary to generate the

G(v)l's, the other factor affecting the value of g is B(v), a

quantity whose value is determined by the rotational constants,

Y From Eqs ('88), (92), and (93), it follows that the width of

the curve, as determined by the RKR method, and the value at

which Gv+ 1/2 = 0 depends only upon the vibrational constants

which make up Gv. On the other hand, having selected suitable

constants for Gv, the behavior of g, the rate at which the outer

portion of the curve approaches De, and the behavior of the slope

of the inner portion of the curve depends solely upon the

constants which constitute Bv .

Following this logic, Leroy applied the criteria in 1 above

first. If the constants obtained from experimental data do not

satisfy this criteria, the value of the last experimental
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constant is adjusted or a value is selected for the next

constant, Yn' in the series given by expression (8). The

contribution from that constant, Yn0 (v+i/2)n, is then subtracted

from the G(v) values calculated from the original experimentally

based constants. A least-squares fit is then performed on the

adjusted experimental data, Gvj:

n-1
Gvj = £ Yi (vj + 1/2) i (111) ,-.

For a given Yn0 the experimental data fixes the values of the

other constants. This new set of constants is tested to -

determine if Gv approaches a maximum value of De. Leroy and

Burns say that if this value approaches De within <2 cm -1 then

the criteria in 1 is satisfied. If 1 is not satisfied, then a

new trial value for Yn0 is chosen and the process repeated until

1 is satisfied.

At this point, a new RKR curve is generated using the new

vibrational constants, Yis' and the experimental rotational

constants, Yil" The curve is then evaluated according to

criteria (2) and (3). If the inner portion of the curve

diverges, the process followed for adjusting the constants for Gv

is repeated for the constants making up By. The value for the

last experimental constant is adjusted or a value for the next

rotational constant in the Yil series is selected. Then Bv
r
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values given by the experimental constants are adjusted as

follows:

n-1 -
Bvj= Yil(vj+l/2) _ [Ynl(vj+1/2ln] (112)

i=O

Then a least-squares fit is performed to obtain a new set of

rotational constants Y0 I through Ynl" The new constants are then

used to produce a new RKR curve. If the curve does not satisfy

the criteria in 2 and 3, then the Ynl constant is adjusted and

the process repeated until 2 and 3 are satisfied.

In this manner, Leroy and Burns obtained a set of constants

consistent with the experimental data and with criteria 1-3.

Tellinghuisen and Henderson describe a technique for

constructing RKR based curves when experimental data does not

permit the direct calculation of the rotation constants. (44)

Their technique is based upon a combination of the Morse and RKR

potentials; hence, Morse-RKR curves.

As explained, vibrational constants provide all the

information necessary to calculate f, Eq (88) and, thus, the

width of the potential curve, 2f, as defined by Klein for a given

vibrational energy level. Having established the width of a

potential, the remaining piece of information required to

construct a potential curve is the location of either the inner

or outer branches of the potential curve, or the center of the .-.

potential well, i.e., g as obtained from the RKR calculations.
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Tellinghuisen and Henderson point out that inner turning

points on a potential curve might be approximated by the Morse

potential (13)

U(r) =D (1 -e(r ))2 (113)

where:

De = dissociation energy, cmC'

re = equilibrium internuclear distance,

S.277 e ("/De) /2(114)

where

we =the vibration frequency, cm-

1~=reduced mass, amu

Or because of the relation

D w 2/( 2, (115) *e 4(e e)

B may be expressed as follows:

8 0.243555 (W X ) 1 / 2  (116)
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Using these relations, Tellinghuisen investigated 25

different well-known potentials and found errors at the

dissociation limit for the inner portion of the curve to be

typically less than 0.02 A and re to be in error by seldom more

than 1%.

Further, Tellinghuisen states that a potential curve in error

by Armi has identical classical and almost identical quantum

eigenvalues for J =0. The wavefunctions derived from a shifted

curve would be skewed with respect to a proper wavefunction.

If possible, Tellinghuisen recommends the construction of

curves by formulas (115) and (116) using the experimental wean

we~e If oly eand De are known, then a value of De 40% larger

wexe-~°% Ifol °

than the experimental De should be used.

Tellinghuisen also speculates that .-

diffren wel-kownpotntils nd oue mights balculated

using an expression derived by Pekeris from the Morse

function: (46)

[af.1/2
6e Wexe I

e Se (117)

e e-

Tellinghuisen found that for 23 of the 25 cases he investigated,

the ae calculated per formula (117) had an average absolute error

of 13% and an average signed error of 6%.
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If one is seeking the rotational constant De (YO2), the

following relation might be used:(
13 )

24Be 
:;

D e (118)
e

Tellinghuisen cautions against using Bv values made up of

only two terms, i.e.,

Bv = B -a (v+1/2) (119)e

because the Morse expression for Bv does not terminate with two

terms as does Gv. Further, for high values of v, the Morse Bv

will differ from the Morse-RKR Bv. The Morse-RKR Bv value must

be determined by numerical methods.

b) Extension of the X-State Lead-Oxide Potential Energy Curve to

the Dissociation Limit, De

The potential energy curve for the ground state of lead-oxide

was selected as the likely candidate for extension to the

dissociation energy, De- This selection was based upon the fact

that the constants for the ground state have the smallest

standard errors.

The vibrational constants of Linton and Broida were selected

as starting values because of their small error limits. The

creation of potential energy curves also requires the knowledge
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tational constants. The rotational constants were selected

Suchard( 4 5 )• Table 12 contains the original constants and

inal set of constants used in extending the curve to the

ciation limit.

'he method prescribed by Leroy was used. Linton and Broida's

:ants were used to generate a set of G(v)'s according to Eq

for v=0 to 15. A trial value was selected for Y40 and the

constants, Y30 ' Y20 , and YIO were obtained by performing a

t-squares fit to the value obtained from Eq (111). Program

DN was modified to perform the fit. The process was repeated

I the criterion of Gv+l/ 2 = 0 at De was satisfied.

Suchard's constants were used to generate a set of Bv'S for

to 15 according to Eq (92). A trial Y was selected and new

and YII constants were obtained from a least squares fit to

values calculated by Eq (112).

The new vibrational constants and rotational constants were

as the inputs for the RKR-IPA program. The process of

sting the rotational constants was repeated until the

eria expressed in Eqs (108), (109), and (110) were satisfied.

The last set of constants calculated are presented in Table

s the extended constants. The Final Set of Turning Points,

utput by the IPA routine was used to create the potential

e (solid line) in Fig 3 which satisfies the dissociation

eria. The dashed line in Fig 3 is the RKR curve, as defined

he original constants of Linton and Broida, and Suchard. It
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TABLE 12

Constants Used to Extend the Lead-Oxide X-State

Potential Energy Curve to the Dissociation Limit, D e

Constants Original Values Extended Values

10720.97(0.36) 721.0628419

Y2 3.536 -3.57101904

303.8507637Xi0

Y40 1.29X10 4

Y10.307519 0.30726775

-1.9167X10-
3  

- . 710-3

y2  - 1.5X10_5
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should be noted that the constants, as presented in Table 12,

will only produce a curve in Fig 3 when input into an RKR-IPA

routine. Examination of the Final Set of Turning Points yields a

minimum inner turning radius of about 1.62 angstroms for

vibrational quantum numbers from v=33 to v=69. Examination of

the turning points for the initial potential generated by RKR,

listed at the beginning of the RKR-IPA program output shows RMIN

turning points as small as 1.54 angstroms for v=74. For v=69,

the last vibrational quantum number investigated by the IPA

routine, the RKR program returned an RMIN of 1.59 angstroms.

This decreasing value of RMIN indicates that the left branch of L

the curve would diverge just as shown by the dashed line on the

left-hand side in Fig 3. The turning points of the RKR potential

were of sufficient quality that the IPA program was able to

correct the potential to yield the solid curve of Fig 3. In this

work, the procedure described above, was the final one used;

however, continued refinements are possible by the use of the

RKR-IPA program. The next step should be to take the

G(v) CU(R)] and B(v) [BV*100) values as output by the IPA program

and perform a least-squares fit to obtain a new set of YnO and

Yn1 constants. These, in turn, would be used as input for the

constants from the experimental data and to calculate the higher

Yn+V v+ constants.

The convergence of the IPA routine became very sensitive as

the sought for value of the last vibrational constant was
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approached. For example, the IPA routine would not converge when

values of Y2 1  -1.25xi0-5 or Y21 -1"75xi0-5 were used. The

program would converge for values of Y2 1 larger and smaller than

these, but the shape of the resulting curve diverged from the

desired shape. An indication of the convergence of the IPA

routine may be obtained by looking at the next to the last output

of the IPA-RKR program, "The Summary of Errors of the Inverted

Perturbation Approach."

Due to the fact that the final set of turning points

fluctuates about 1.62 angstroms and the potential is in reasing

asymptotically along 1.62 angstroms, multiple potential energies

are presented for the same RMIN turning point value. Thus, when

searches are performed using a turning point radius value [XXX]

as in DO-loop 55 of POTTAB, and PLYNN called from this loop, the

routine stops at the first value satisfying the requirement [XXX]

X(J) (Subroutine PLYNN). The end result is that potential

energies corresponding to turning points of magnitude of less

than about 1.62 angstroms in the final potential should not be

accepted as valid without close inspection. Improved constants

and successive iterations of the RKR-IPA routine may remove this

discrepancy.
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